

Presentation of draft report findings

A technical and economic analysis for an FTTH infrastructure in Malta and Gozo

29 November 2011 • Pat Kidney & Matt Yardley

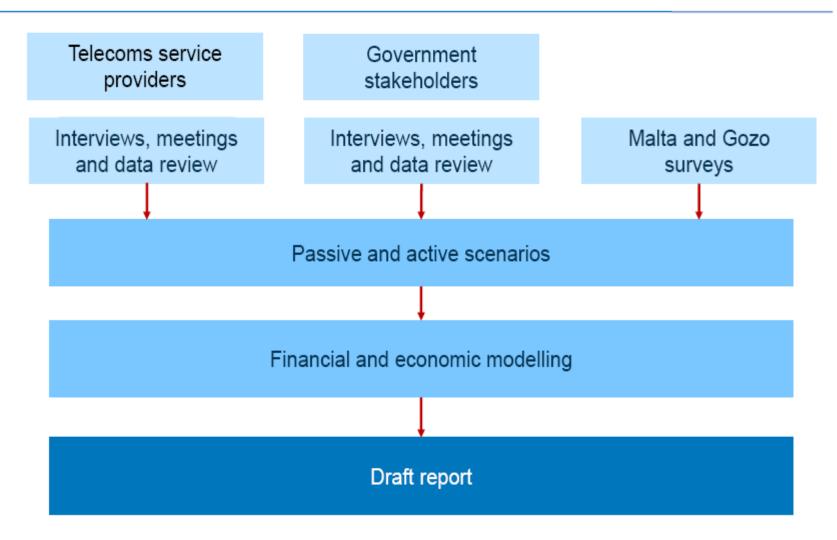
A national FTTH network is a key part of Government's objectives

- Delivering a next generation infrastructure is one of the seven pillars of Malta's Smart Island Strategy
- The Maltese government's vision is move ahead of other countries and be the country of the future, where new technologies are realised to the fullest extent possible

"The government's goal for broadband investment is to accelerate the rollout of ultra-fast broadband to cover all areas of Malta and Gozo, concentrating, where possible, on priority broadband users such as businesses, schools and public services, and reaching all residential areas in a phased approach through an FTTH network. Where fibre is limited in reach, the government will also consider alternative technologies. The project will seek to attract private-sector investment, and be directed to open-access infrastructure."

Meeting the governments objectives will also ensure that Malta will meet the DAE targets

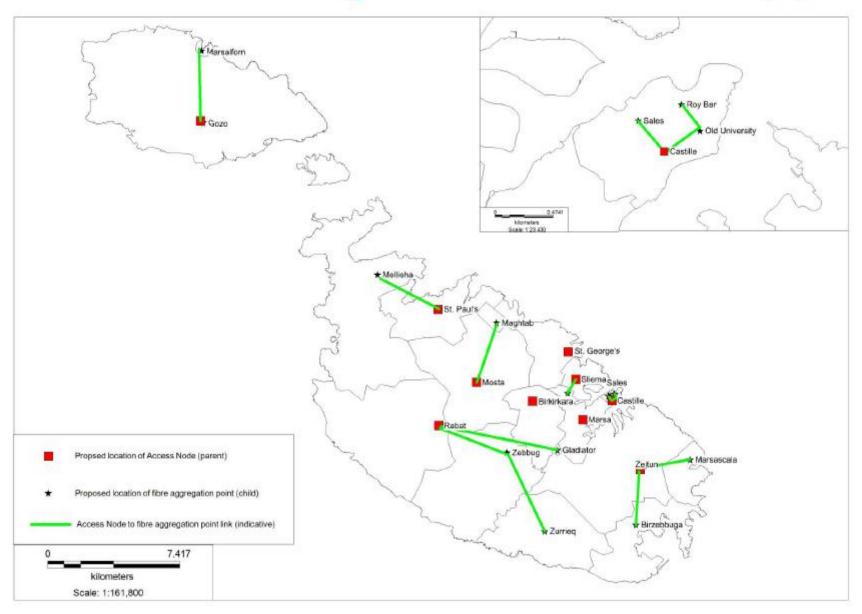
- EC's Digital Agenda for Europe targets
 - Broadband access for all by 2013
 - At least 30Mbit/s connections for all by 2020
 - At least 50% of households to use services of at least 100Mbit/s by 2020
- Neelie Kroes (European Digital Agenda Commissioner) 3rd Oct 2011:
 - Pledged €7bn of EU funding for broadband infrastructure
 - Consultation on copper pricing and switch off



Could regulation help?

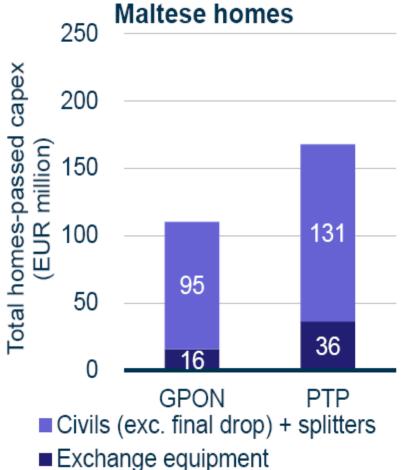
- The EC requires that regulation is considered ahead of Government intervention in broadband
- Wholesale cable access very limited in practice
 - Old: some in UK but was not taken up (effectively resale)
 - New: in France, but commercially negotiated; cable having relatively low market share a factor
- Difficult to see how regulation could ensure the Government's objectives will be met

Recap of approach taken in the study

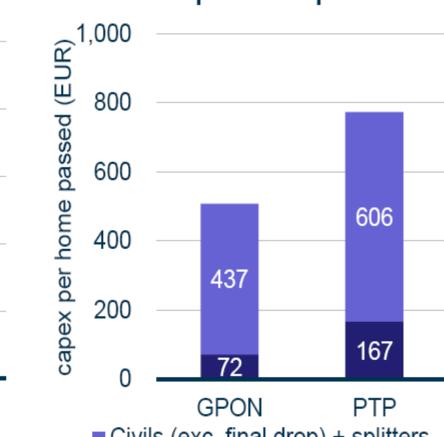


Our recommendations for this study

Issue	Recommendation
Unbundling layer	Layer 1 and Layer 2 to be considered in the feasibility
Technology	GPON and PTP to be considered in the feasibility (leaving decision to the market to select which) PTP has advantages but costs quite a bit more than GPON Even in a GPON implementation for residences, PTP is likely to be used for for business (hybrid approach).
Products	Full set of access and backhaul/aggregation products at Layer 1 and Layer 2

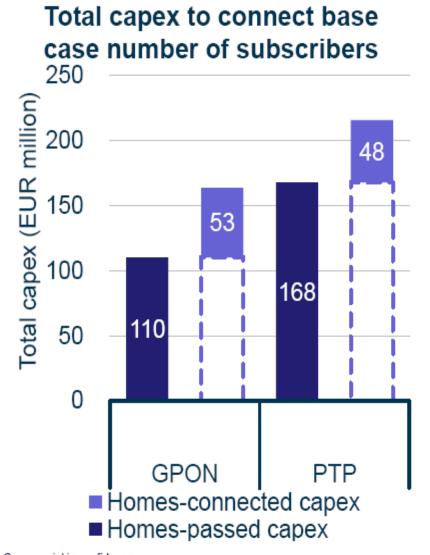


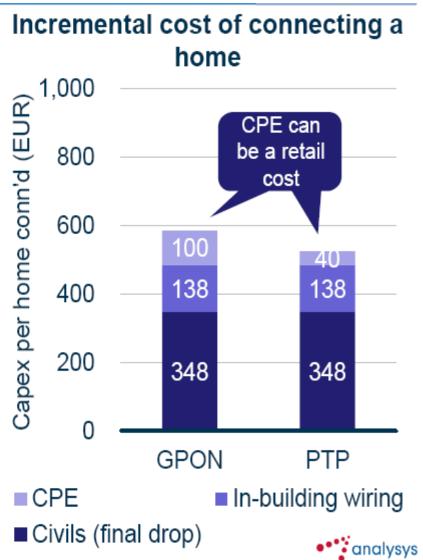
Basis for modelling the FTTH economics (2)



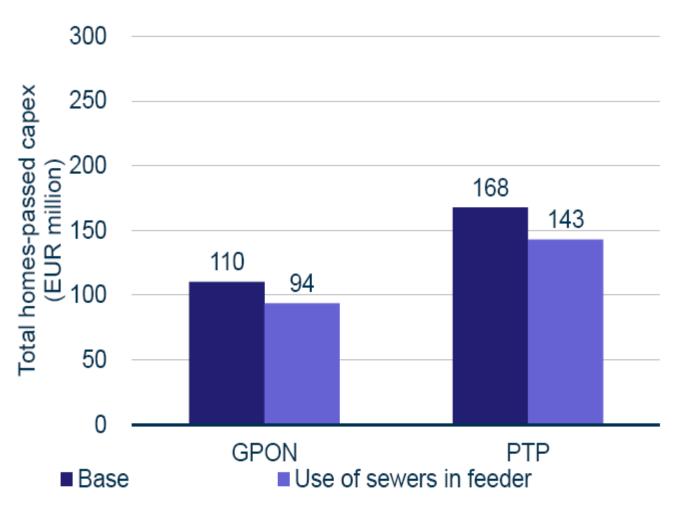
It will cost EUR110m to EUR168m to build a network which passes each home...

Total capex to pass near 100% of

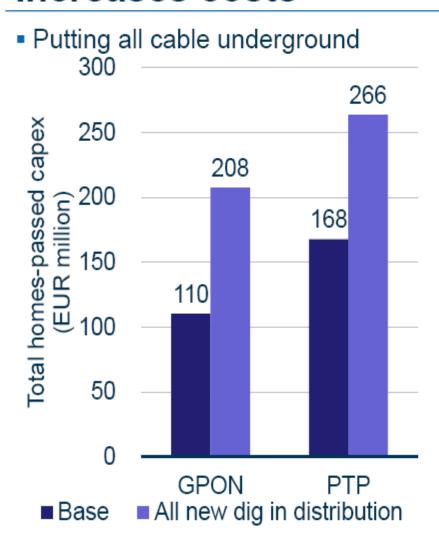

Cost per home passed



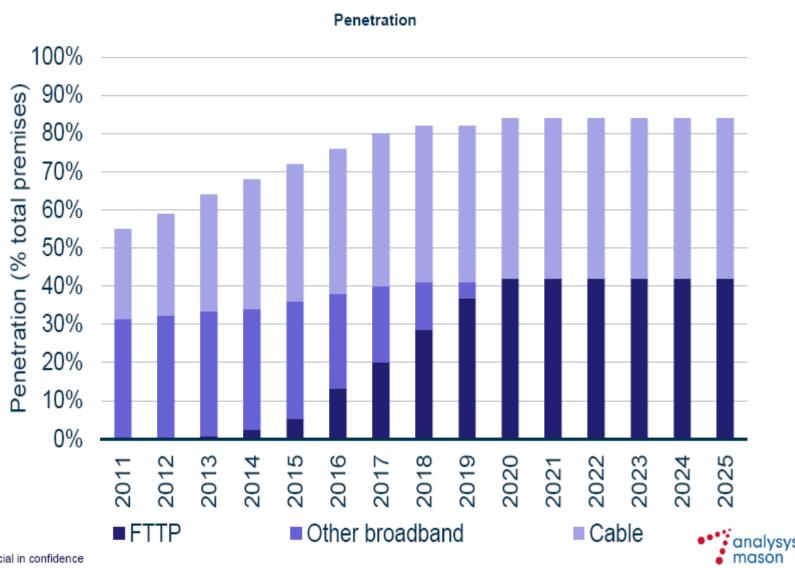
- Civils (exc. final drop) + splitters
- Exchange equipment



... and between EUR163m and EUR216m to pass and connect homes



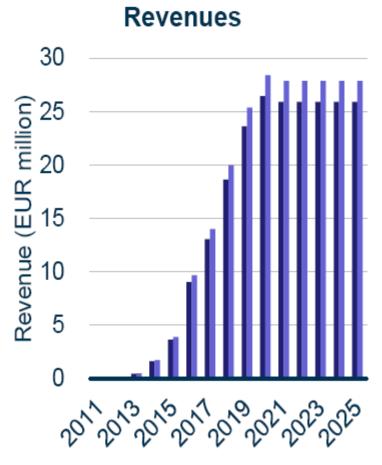
Use of sewers provides modest savings



Installing cable underground substantially increases costs

- Putting the distribution cabling underground impacts
 - Cost
 - Rollout Timeframe (adds two to three years)
- Almost EUR100m whilst existing copper, cable and electrical networks remain overhead
- Countries such as the UK now accept overhead as part of the FTTH solution
- High standards for overhead cable can be specified as part of process

We assume cable and the new network would provide all connections in the long term



Demand side assumptions (2)

Wholesale Pricing

Product	Typical Product today (Mbit/s down/up)	Monthly ARPU* (EUR)
GPON-Low	30/10	22**
GPON-Medium	50/20	25
GPON-High	100/40	30
PtP-Low	30/30	25
PtP-Medium	50/50	30
PtP-High	100/100	45

^{*}ARPU is the Average Revenue Per User for broadband and other services such as TB



■ Total Revenue - PTP

^{**}We assume a connection fee of EUR50 in all cases
Commercial in confidence

This all suggests a subsidy of ~€29-50m

Is this a fair price to pay?

- 1) For meeting the Government's objectives
- 2) For meeting the DAE targets (without sole reliance on cable)
- 3) For securing a workable wholesale access regime

It may be, if the socio-economic case holds

- Economic and social cost benefit analysis following standard EU approach
- Example for GPON (€m):

 Total project costs (ca 	apex and opex) -	267
---	------------------	-----

-Total project revenues +226

-Terminal value +125

–Benefits to businesses & Government +58

-Consumer surplus +183

-Social provision (health) +70

-Economic NPV @5.5% +193

GDP growth rate impact ~ 0.2%-0.5% p.a.

Several delivery models are possible, but some are more suited to the Maltese context

Model	Assessment	Examples
Community / bottom-up	Not suitable given national objectives	Norway
Private Design Build Operate	Possible	UK (Cornwall, Wales, Northern Ireland), Singapore
Public outsourcing	Not suitable given scale of project (on Govn. balance sheet)	MANs in Ireland
Joint venture	Possible	Citynet, Amsterdam
Public Design Build and Operate	Not suitable given scale of project	NBN Co in Australia

Two possible options

Joint Venture

Advantages

- Potential benefit for both parties (risk sharing)
- SPV allows for alternative investment sources

Disadvantages

- Possible multiple operator
 Conflicts of Interest challenges
- Few working examples

Private DBO

Advantages:

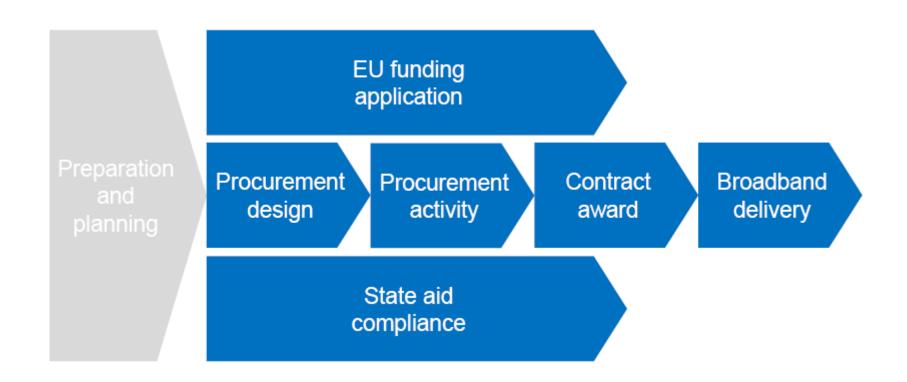
- Large scale
- Low public burden
- Transfers operational risk to private sector

Disadvantages:

- There needs to be sufficient funding to attract private interest
- Limited control over operations

Other useful things the Government can do

Action	Benefit
Reforming building regulations	Lower costs of connection
Reforming procedures and processes for opening roads and carrying out works in public areas in order to reduce administrative costs and delays	Faster deploymentLower costs of deployment
Making available state infrastructure such as duct, water and electricity networks to all operators in the market for the purposes of efficiently deploying an NGA network	 Lower costs of deployment Potential to stimulate market entry



Possible next steps (1): preparation and planning

- Finalise government decision to provide funding
- Set up a state aid "task force"
- Issue a request for interest to the market
- Finalise government's preferred investment model JV or private DBO
- Explore EU funding (Connecting Europe Facility)

Possible next steps (2): go to market

Thank you

Matt Yardley

Partner

matt.yardley@analysysmason.com

+44 7766 058 242

Pat Kidney

Senior Manager

patrick.kidney@analysysmason.com

+353 86 244 6091

Cambridge

Tel: +44 (0)845 600 5244 Fax: +44 (0)1223 460866 cambridge@analysysmason.com

Dubai

Tel: +971 (0)4 446 7473 Fax: +971 (0)4 446 9827 dubai@analysysmason.com

Dublin

Tel: +353 (0)1 602 4755 Fax: +353 (0)1 602 4777 dublin@analysysmason.com

Edinburgh

Tel: +44 (0)845 600 5244 Fax: +44 (0)131 443 9944 edinburgh@analysysmason.com

London

Tel: +44 (0)845 600 5244 Fax: +44 (0)20 7395 9001 london@analysysmason.com

Madrid

Tel: +34 91 399 5016 Fax: +34 91 451 8071 madrid@analysysmason.com

Manchester

Tel: +44 (0)845 600 5244 Fax: +44 (0)161 877 7810 manchester@analysysmason.co

m Milan

Tel: +39 02 76 31 88 34 Fax: +39 02 36 50 45 50 milan@analysysmason.com

New Delhi

Tel: +91 11 4700 3100 Fax: +91 11 4700 3102 newdelhi@analysysmason.com

Paris

Tel: +33 (0)1 72 71 96 96 Fax: +33 (0)1 72 71 96 97 paris@analysysmason.com

Singapore

Tel: +65 6493 6038 Fax: +65 6720 6038 singapore@analysysmason.com

Washington DC

Tel: +1 202 331 3080 Fax: +1 202 331 3083 washingtondc@analysysmason.c om